IRAC (Insecticide Resistance Action Committee)

International Structure and Working Groups

Charter: Champion principles that reduce insecticide selection pressure on pest populations to sustain agriculture. Lead industry experts in sponsoring research and educational outreach on Insecticide Resistance Management.

10 member companies (6 Crop Life)

These guidelines are for educational purposes only. Details are accurate to the best of our knowledge but IRAC and its member companies cannot accept responsibility for how this information is used or interpreted. Advice should always be sought from local experts or advisors and health and safety recommendations followed.
Lepidoptera Insecticide Mode of Action Classification: A key to effective insecticide resistance management

Insecticide Resistance Action Committee

www.irac-online.org

Introduction and background

The agrochemical industry has developed a broad range of very effective insecticides for the control of lepidopteran pests. Unfortunately, as a consequence of the misuse or overuse of these insecticides, many species have developed resistance. Populations of Plutella xylostella, for example, have developed resistance to virtually every insecticide used against them. Additionally, there are numerous other species prone to resistance development. In recent years the industry has worked especially hard to develop new types of insecticides with novel modes of action, but this process is becoming ever harder and more costly. It is therefore vital that effective insecticide resistance management (IRM) strategies are implemented, to ensure that resistance does not develop to these new compounds, or to older chemistries that are still effective.

In order to help prevent or delay the incidence of resistance, IRAC promotes the use of a Mode of Action (MoA) classification of insecticides in effective and sustainable IRM strategies. Available insecticides are allocated to specific groups, based on their target site, mechanism of action, and properties of action that affect resistance development. This system is continually updated to reflect new information and improve the classification system. Below is a summary of this classification system.

Nerve and Muscle Targets

Most current insecticides act on nerve and muscle targets. These insecticides are generally fast acting.

Group 1 Acetylcholinesterase (AChE) inhibitors

Inhibit AChE, causing hyperexcitation. AChE is the enzyme that terminates the action of the excitatory neurotransmitter acetylcholine at nerve synapses.

1A Carbamates (e.g. Methomyl, Thiodicarb)

1B Organophosphates (e.g. Chlorpyrifos)

Group 2 GABA-gated chloride channel blockers

Block the GABA-activated chloride channel, causing hyperexcitation and convulsions. GABA is the major inhibitory neurotransmitter in insects.

2A Cycloheximide Organochlorines (e.g. Endosulfan)

2B Phenylipyrazoles (e.g. Fipronil)

Group 3 Sodium channel modulators

Keep sodium channels open, causing hyperexcitation and, in some cases, nerve block. Sodium channels are involved in the propagation of action potentials along nerve axons.

3A Pyrethrins, Pyrethroids (e.g. Cypermethrin, J-Cyhalothrin)

Group 4 Nicotinic acetylcholine receptor (nAChR) competitive modulators

Bind to the acetylcholine (ACh) site on nAChRs, causing a range of symptoms from hyper-excitation to lethargy & paralysis. nAChR is the major excitatory neurotransmitter in the insect central nervous system.

4A Neonicotinoids (e.g. Acetamiprid, Thiacloprid, Thiamethoxam)

Group 5 Nicotinic acetylcholine receptor (nAChR) allosteric modulators, Site 1

Allosterically activate nAChRs (at Site 1), causing hyperexcitation of the nervous system. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

5A Spinosyns (e.g. Spinosad, Spinetoram)

Group 6 Glutamate-gated chloride channel (GluCl) allosteric modulators

Allosterically activate glutamate-gated chloride channel (GluCls), causing paralysis. Glutamate is an inhibitory neurotransmitter in insects.

6A Avermectins, Milbemycins (e.g. Abamectin, Emamectin benzoate, Lipemiscin)

Group 14 Nicotinic acetylcholine receptor (nAChR) channel blockers

Block the nAChR ion channel, resulting in nervous system block and paralysis. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

14A Bensulip, Cartap

Group 22 Voltage-dependent sodium channel blockers

Block sodium channels, causing nervous system shutdown and paralysis. Sodium channels are involved in the propagation of action potentials along nerve axons.

22A Indoxacarb

22B Methulfuronmethyl

Group 28 Rydiondine receptor modulators

Activate muscle rydiondine receptors, leading to contraction and paralysis. Rydiondine receptors mediate calcium release into the cytoplasm from intracellular stores.

28A Diuadocins, Cylindrace, Cylindrapin, Flubendiamide

Group 30 GABA-gated chloride channel allosteric modulators

Allosterically block the GABA-activated chloride channel, causing hyperexcitation and convulsions.

30A Meta-diamides (e.g. Broflanilide)

Group 32 Nicotinic acetylcholine receptor (nAChR) allosteric modulators, Site 1

Allosterically activate nAChRs (at Site 1), causing hyperexcitation of the nervous system. Acetylcholine is the major excitatory neurotransmitter in the insect central nervous system.

32A GS-omega/kappa HXTx-HV1a Peptide

Midgut Targets

Lepidopteran-specific microbial toxins that are sprayed or expressed in transgenic crops.

Group 11 Microbial disruptors of insect midgut membranes

Protein toxins that bind to receptors in the midgut membrane and induce pore formation, resulting in ionic imbalance and septicemia.

11A Bacillus thuringiensis

11B Bacillus sphaericus

Group 31 Host-specific occluded pathogenic viruses

Host-specific occluded pathogenic viruses.

Granuloviruses, Nucleopolyhedroviruses

Respiration Targets

Mitochondrial respiration produces ATP, the molecule that energizes all vital cellular processes. In mitochondria, an electron transport chain uses the energy released by oxidation to charge a proton gradient that drives ATP synthesis. Several insecticides are known to interfere with mitochondrial respiration by the inhibition of electron transport and/or oxidative phosphorylation. Insecticides that act on individual targets in this system are generally slow to moderately fast acting.

Group 13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient

Protosponges that short-circuit the mitochondrial proton gradient so that ATP cannot be synthesized.

Chlorfenapyr

Group 21 Mitochondrial complex I electron transport inhibitors

Inhibit electron transport complex I, preventing the utilization of energy by cells.

21A Toltenpyrad

Growth and Development Targets

Insect development is controlled by the balance of two principal hormones: juvenile hormone and ecdysone. Insect growth regulators act by mimicking one of these hormones or by directly affecting cuticle formation/deposition or mid-gut digestion. Insecticides that act on individual targets in this system are generally slow to moderately slowly acting.

Group 7 Juvenile hormone mimics

Applied in the pre-metamorphic instar, these compounds disrupt and prevent metamorphosis.

7B Juvenile hormone analogues (e.g. Fenoxycarb)

Group 15 Inhibitors of chitin biosynthesis affecting CHST

Incompletely defined mode of action leading to inhibition of chitin biosynthesis.

Benzoylureas (e.g. Fludioxonil), Acetamidocarb, Flupyradex, Novaluron

Group 18 Ecdysone receptor agonists

Mimic the moulting hormone, ecdysone, inducing a precocious molt.

Dicyanhydrazines (e.g. Metoxyfenozide, Telbentalozide)

Unknown

Group UN Compounds of unknown or uncertain MoA

Azadirachtin, Pyridial

Group UNB Bacterial agents (non-Bt) of unknown or uncertain MoA

Burkholderia spp

Group UNF Fungal agents of unknown or uncertain MoA

Beauveria bassiana, Pseudomyces fumosoroseus

Targeted Physiology: Rotations for resistance management should be based only on the numbered mode of action groups.

Nerve & Muscle Growth & Development Respiration Midgut Unknown or Non-specific

This poster is for educational purposes only. Details are accurate to the best of our knowledge but IRAC and its member companies cannot accept responsibility for how this information is used or interpreted. Advice should always be sought from local experts or advisors and health and safety recommendations followed. IRAC document protected by © Copyright

www.irac-online.org
1. **IRAC Member Companies are Responsible to Include Clearly Understandable IRM Information on Product Labels.**

Insecticide Manufacturers Should Include Basic IRM Elements on Product Labels

<table>
<thead>
<tr>
<th>IRM Elements</th>
<th>Minimal Label Recommendation</th>
</tr>
</thead>
</table>
| **1). Mode of Action Number and Chemical Class** | - Place the IRAC MoA labeling on the first page (number and icon) …
- If prohibited from first page then place the MoA icon and number in the Resistance Management label text.
- State the chemical class of active ingredient(s) in label text. |
| **2). Maximum Number of Applications** | State the maximum number of product applications for each crop on the label per cropping season or per year |
| **3). Quality Label IRM Statement** | Contains at least the 3 ‘REQUIRED’ components for a quality label IRM statement.
1. State the IRAC MoA Number
2. Rotate products with different Modes of Action
3. Provide guidance to avoid treating consecutive generations with the same MoA. |
1. **IRAC Member Companies are Responsible to Include Clearly Understandable IRM Information on Product Labels.**

Additional Guidance: Product Label Format for Mode Action Number and Icon

Include the MOA classification on the label. Preferably place by the list of ingredients on the first page of the label or within the IRM statement, if permitted by local regulatory label guidelines.

Note:
- When a product has two or more modes of action, use appropriate identifier numbers for each active ingredient.
- Letters representing the sub-group should be the same size as the MoA number.
- Letters should be capitalized.

Example 1: Solo Mode of Action

```
Insecticide A® 20SC
Active ingredient: [Compound name]
Formulation details
GROUP 28 INSECTICIDE
```

Example 2: Mixture of 2 or more Modes of Action

```
Insecticide B® 25SC
Active ingredients: [Compound names]
Formulation details
GROUP 3 INSECTICIDE
GROUP 28 INSECTICIDE
```

Example 3: Modes of Action with Sub-Groups

<table>
<thead>
<tr>
<th>Without Sub-Groups</th>
<th>With Sub-Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 11 INSECTICIDE</td>
<td>GROUP 11A INSECTICIDE</td>
</tr>
<tr>
<td>GROUP 22 INSECTICIDE</td>
<td>GROUP 22A INSECTICIDE</td>
</tr>
<tr>
<td>GROUP 4 INSECTICIDE</td>
<td>GROUP 4B INSECTICIDE</td>
</tr>
</tbody>
</table>

Insecticide resistance management guidelines for lepidopteran pests
1. **IRAC Member Companies are Responsible to Include Clearly Understandable IRM Information on Product Labels.**

Examples of Insecticide Resistance Management (IRM) statements for inclusion in product labels

Include an IRM statement on the label. Propose the most comprehensive IRM statement legally permitted by local regulations. Two examples provided.

Example 1 – Short Version: Insecticide Resistance Management (IRM) - General Recommendations

- _____ (product name) contains _____ (active ingredient name), a Mode of Action Group Number XX Insecticide representing ____ chemistry.
- Avoid treating consecutive generations of the target pest with products having the same mode of action. Apply _____ (product name) using a “window” approach (duration of an insect generation or approximately 30 days). Rotate blocks of treatments with _____ (product name) or products with the same mode of action followed by blocks of treatments with other effective products with different modes of action. For short cycle crops (<50 days), consider the duration of the crop cycle as a “window”, thus alternate to different modes of action during subsequent plantings at the same farm location.

Example 2 – Comprehensive Version: Insecticide Resistance Management (IRM) – General Recommendations

- A resistance management strategy should be established for the defined crop area; including cultural and biological control practices, alternation of different mode of action insecticides, appropriate application timings and adequate spray volumes, to achieve the optimum crop coverage and pest mortality.
- Do not exclusively use ______(Product Name) and other products representing ___ chemistry with Mode of Action Group Number XX throughout a crop cycle. Apply_____ (Product Name) and Group XX insecticides within a Window* to avoid exposure of consecutive insect pest generations to the same mode of action.
 - * A window is defined by the duration of an insect generation or approximately 30 days. The period of residual activity provided by a single or sequence of product applications with the same mode of action should fit within a single insect generation window. Multiple applications of the same MoA insecticide are acceptable if they are used to treat a single insect generation or are used within a window.
- The use of multiple modes of action within a window is recommended. Following a window of any mode of action group, rotate to a window of applications of effective insecticides with different modes of action.
- For short cycle crops (<50 days), consider the duration of the crop cycle as a window, so it is recommended to alternate to different modes of action within the next crop cycle.
- As a general rule, the total exposure period of all windows with the same MoA applied throughout the crop cycle (from seedling to harvest) should not exceed 50% of the crop cycle. The total number of insecticide applications of the same MoA should not exceed 50% of the total number of insecticide applications targeted against the same pest species.
- Avoid using less than label rates of ______(Product Name) when applied alone or in tank mixtures.
- Target the most susceptible insect life stages whenever possible.
- Monitor insect populations and apply at the most effective timing. If the insecticide gives weaker performance than expected, which cannot be attributed to factors such as poor application or adverse weather conditions, suspect a resistant strain of the insect may be present.
2. Use products at the recommended label rates and spray intervals with appropriate and maintained application equipment.

Example: Label Directions For Use

- Follow recommended rate, interval between sprays, and application timing.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Pest</th>
<th>Product use rate per 10 liter water</th>
<th>Spray Volume Per ha</th>
<th>Spray Volume Per ha</th>
<th>Spray Interval and Number of Applications/Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilli</td>
<td>Fruit borer (Helicoverpa armigera, Spodoptera litura, Spodoptera exigua)</td>
<td>3 ml</td>
<td>150 ml</td>
<td>500 Liter</td>
<td>Spray at first egg lay Minimum interval between treatments is 7 days. Do not exceed 2 sprays in a crop season</td>
</tr>
</tbody>
</table>

- Under-dosed applications can accelerate resistance.

Individual insects in a population carry genes for resistance even before the product has ever been sprayed.

- Over-dosed applications may impact non-target organisms.

- Maintain spray equipment to deliver accurate rate to target area.

Always apply insecticides at recommended label rates to control susceptible, some moderately resistant and even a portion of the more resistant insects.
3. **Rotation of insecticide MoA groups prevents rapid selection of resistant populations.**

- Avoid selection for insecticide resistance by rotating insecticide modes of action used within and between pest generations.

- Use products of the same MoA within a discrete period of time commonly called a ‘window’. A window is defined by the duration of an insect generation or approximately 30 days. The period of residual activity provided by a single or sequence of product applications with the same mode of action should fit within a window.

MoA Rotation Concept: Examples of good and poor IRM rotation practices:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Gen</td>
<td>1st Gen</td>
</tr>
<tr>
<td>2nd Gen</td>
<td>2nd Gen</td>
</tr>
</tbody>
</table>

- **No Alternation/Rotation**
 - High selection pressure.
 - No recovery of sensitive population.

- **Rotation Within a Generation**
 - Consecutive generations exposed to same MoAs.
 - Selection pressure over all generations. Risk of resistance development for both MoA.

- **Rotation Between Generations**
 - Consecutive generations are not exposed to same MoA. Break in selection pressure between generations allows recovery of susceptible population.

- **Rotation Within and Between Generations**
 - Ideal situation for lower selection pressure. May not be practical due to limited number of effective products with different modes of action.
Insecticide resistance management guidelines for lepidopteran pests

3. **Rotation of insecticide MOA groups prevents rapid selection of resistant populations.**

Examples of different approaches to rotation of Modes of Action in windows

“MoA Window”: Begins With First Application Until End of Residual Activity

“MoA Window”: Spray Windows Synchronized with Length of Insect Generation

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoA xx window</td>
<td></td>
</tr>
<tr>
<td>MoA xx window</td>
<td></td>
</tr>
<tr>
<td>MoA yy window</td>
<td></td>
</tr>
<tr>
<td>MoA yy window</td>
<td></td>
</tr>
</tbody>
</table>

Single or Sequential application(s) depending on residual activity of treatment but covering only one generation of the target pest = 1 window.

Note. If residual activity provided by a single application is longer than a single generation of the target pest, restrict use to a single application.

“MoA Window”: Separate Season into 30 Day Windows

Use single or Sequential application(s) depending on residual activity of treatment but covering only one window of approximate 30 days.
3. **Rotation of insecticide MoA groups prevents rapid selection of resistant populations.**

a). Do not use products with the same single mode of action throughout a crop cycle.

b). Apply insecticides of the same mode of action group within a window to avoid exposure of consecutive insect pest generations to the same mode of action.

c). Multiple applications (generally 1-2) of the same MoA insecticide applied back to back (sequentially) are acceptable if they are used to treat a single insect generation or are used within a single window. The residual activity of the multiple applications should fit within the window.

d). Following a window of any mode of action group, rotate to a window of applications of effective insecticides with a different MoA

MoA Rotation Example: Resistance management strategy developed for brassica crops in Philippines

![Diagram](image)
e). The use of multiple modes of action within a window is recommended provided that different modes of action are used in the following window.

EXAMPLE: Brazil Soybeans

<table>
<thead>
<tr>
<th>Pre-sowing Window</th>
<th>Window 1 (VE-V5)</th>
<th>Window 2 (V6-R2)</th>
<th>Window 3 (R3-R4)</th>
<th>Window 4 (R5-R6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliar insecticides prior to sowing</td>
<td>Seed treatments or early foliar applications for soil or lepidopteran pests</td>
<td>Foliar application at local pest threshold. Use selective insecticides to control foliar leps, stink bugs & whiteflies</td>
<td>Critical not to apply same insecticide MoA used in previous window or against same pests in pre-sowing window of subsequent crop.</td>
<td></td>
</tr>
</tbody>
</table>

* If pre-sowing or foliar application occurs within a few days of planting it can be considered as the same treatment window.
3. **Rotation of insecticide MoA groups prevents rapid selection of resistant populations.**

e). **Rotate products within or between insect generations??**

General Example: Insecticide Rotation Scheme for Cabbage

Based on Number of Different MoA Products Available

<table>
<thead>
<tr>
<th>Multiple MoA Products Available</th>
<th>Few MoA Products Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different MoA products can be used in the same window</td>
<td>Apply products with the same MoA in the same window</td>
</tr>
<tr>
<td>All MoA products must be rotated in the next window</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leaf stage</th>
<th>Head formation</th>
<th>Pre-harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoA A + B</td>
<td>MoA C + D</td>
<td>MoA E + F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Head formation</th>
<th>Pre-harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoA A + A</td>
<td>MoA B + B</td>
<td>MoA A + A</td>
</tr>
</tbody>
</table>

Insecticide resistance management guidelines for lepidopteran pests
3. **ROTATION OF INSECTICIDE MOA GROUPS PREVENTS RAPID SELECTION OF RESISTANT POPULATIONS.**

f). **For short cycle crops (<50 days),** consider the duration of the crop cycle as a window. Alternate to different modes of action within the next crop cycle at the same farm location.

For Short Cycle Crops, a ‘Treatment Window’ is the same as a Crop Cycle

Insecticide resistance management guidelines for lepidopteran pests

- Diamondback Moth (*Plutella xylostella*)
- Leafworm (*Spodoptera exigua*)

MoA xx

- Insecticide Application
- IRM Strategy (Chewing Pest)

Example 1

- MoA xx
- MoA xx
- MoA yy
- MoA zz
- MoA zz

Example 2

- MoA yy
- MoA yy

3. **Rotation of insecticide MOA groups prevents rapid selection of resistant populations.**

g). **Do Not Expose > 50% of Crop Cycle to the Same MOA Group.** The total number of insecticide applications of the same MOA should not exceed 50% of the total number of insecticide applications targeted against the same pest species.

Foliar Application Example: Leafy Vegetables – Use treatment windows (approx 30 day windows) and avoid exposure of > 50% of crop cycle.

Example: 1st Foliar application with a Moa zz Insecticide → Rotate with Effective MOA Groups

<table>
<thead>
<tr>
<th>Days</th>
<th>MoA xx</th>
<th>MoA yy</th>
<th>MoA zz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Less than 50% of Crop Cycle 12-30 days</td>
<td>Less than 50% of Crop Cycle 30-45 days</td>
<td>Less than 50% of the Crop Cycle 45-60 days</td>
</tr>
<tr>
<td>7</td>
<td>Transplanting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Harvest</td>
<td>DBM</td>
<td></td>
</tr>
</tbody>
</table>
3. **Rotation of Insecticide MOA Groups Prevents Rapid Selection of Resistant Populations.**

g). Do Not Expose > 50% of Crop Cycle to the Same MOA Group. The total number of insecticide applications of the same MoA should not exceed 50% of the total number of insecticide applications targeted against the same pest species.

Foliar Application Example: Leafy Vegetables – Use treatment windows (approx 30 day windows) and avoid exposure of > 50% of crop cycle.

Example: 1st Foliar application with a Moa zz Insecticide → Rotate with Effective MOA Groups

- **MoA xx**
 - Soil application (drench, drip, seedling tray)
 - Less than 50% of Crop Cycle 5-35 days

- **MoA yy**
- **MoA zz**

Rotate to Insecticides with Different MOA’s
No single mode of action exceeds 50% of Crop Cycle 35-60 days
3. **ROTATION OF INSECTICIDE MOA GROUPS PREVENTS RAPID SELECTION OF RESISTANT POPULATIONS.**

h). **Avoid rotating products in different sub-groups of the same MoA unless there are no effective alternatives.**

Guidance for using Subgroups
- Avoid using the same MoA products over sequential generations.
- Application of same MoA products with different subgroups apply resistance selection pressure at the insecticide target site.
- Rotate same MoA products with different subgroups over multiple generations only if there are no other alternative insecticide MoAs available.
4. Plan and utilize Integrated Pest management (IPM) practices to protect crops from pest damage and reduce the risk of insecticide resistance.

IPM considers all available techniques which are economic, safe, and environmentally-sound to reduce pest populations. IPM practices do not exclusively rely on insecticides, hence insecticide resistance selection pressure is reduced and the risk of resistance minimized.

A Pest Thresholds
a) Monitor pest species and natural enemies
b) Make rational pest control decisions

B Agronomic practices
a) Crop rotations
b) Crop-Free periods
c) Clean-up infested crop residues
d) Use resistant crops
e) Include non-treated refuges

C Biological control
a) Artificially introduce or use natural enemies to reduce pest populations.
b) Manage cropping to encourage beneficial species
c) Consider alternative microbial insecticides

D Chemical control
a) Use selective insecticides responsibly and rotate MoA
b) Apply insecticides when effects on beneficials are minimal
c) Consider alternative application systems e.g. granules, seed treatment, traps
Insecticide resistance management guidelines for lepidopteran pests

4. Plan and utilize Integrated Pest Management (IPM) practices to protect crops from pest damage and reduce the risk of insecticide resistance.

Tuta absoluta

Tomato

EU Greenhouse

IPM - Integrated Pest Management Practices, with IRM Insecticide Rotations

Pre-Season
- Remove cull piles
- Kill weed 2nd hosts
- Renovate GH
- Moth-proof GH (fix screens)
- Monitor adults-Pheromone Traps
- Choose tolerant varieties
- Use pest free transplants

During-Season
- Manage the removal of in-season infested pruned stems and fruit
- Use pheromones and sticky traps to monitor and mass trap adults.
- Use pheromone dispensers for Mating Disruption
- Sprat entomopathic nematoeds and nonchemical products that will not select for insecticide resistance.
- Augment and conserve natural enemy populations
- Use optimal spray volume, maintain and calibrate spray equipment

Post-Season
- Remove cull piles
- Kill weed 2nd hosts
- Renovate GH
- Moth-proof GH
- Solarize soil
- Rotate to non-host crop
- Incorporate an area-wide host free period:
5. Consider the systemic properties of some soil and seed-applied products.

Systemic activity may extend the residual efficacy and the length of the MoA spray window and needs to be considered when planning a program to minimize resistance development. Generally, it is recommended to use an effective foliar product with a different mode of action after a seed treatment or a soil root uptake application (transplant drench, drip, etc.).

![Diagram showing MoA window, crop stage, and recommended MoA products across different stages of crop development.]

MoA Window

- Transplant to Field
- Vegetative Development
- Cupping....Head Formation
- Head Fill Mature Harvest

Crop Stage

- Nursery
- Transplant to Field
- Vegetative Development
- Cupping....Head Formation
- Head Fill Mature Harvest

MoA Recommend

- MoA xx Transplant Drench
- MoA yy
- MoA yy
- Any MoA not used in Window 2

Typical # of Foliar Apps

- Generation 1
 - 0-1 Apps
- Generation 2
 - 2-3 Apps
- Generation 3
 - 1-2 Apps

Comments

- Residual activity defines the length of the window.
- Can use many MoA products or one MoA max of 2x.
- Can use many MoA products or one MoA max of 2x.

Concentration in plant

If root uptake systemic activity extends beyond 30 days do not use same MoA products in next 2 windows.

Example: Mexico Bajio region. Brassica production
- Refer to the IRAC-mixture-statement and IRAC leaflet-on-use-of-mixtures.
- Like single active ingredient products, insecticide mixtures should be used with careful consideration of the characteristics of the individual active substances, use pattern, and pest complex targeted.
- Rotate different MoA products. Do not treat consecutive generations.

Mixtures Rotation Strategy:

Application Window 1
- Pest generation 1
 - Mode of Action A+B®
 - GROUP 3 INSECTICIDE
 - GROUP 28 INSECTICIDE

Application Window 2
- Pest generation 2
 - Mode of Action A+B®
 - GROUP 3 INSECTICIDE
 - GROUP 28 INSECTICIDE
 - Mode of Action A®
 - GROUP 3 INSECTICIDE

Exposure to same Target Pest

Mixtures objectives:
- Broaden pest spectrum,
- Improved pest management,
- IRM is not the primary focus

Guidance for using mixtures
- Do not rely on Mixtures for resistance management
- Do not use the same MoA across windows
- Use Mixtures in rotation with other MoA

Note: Mixtures become less effective if resistance has developed to one of the MoA’s.

Mixture = Co-formulated product or Tank mixture of two or more insecticide active substances
7. Using insecticides with same Mode of Action against different pests in the same crop.

- Applying insecticides against more than one pest species during the cropping season is recommended. Same MoA rotation rules apply.
- Prior to the season, plan the season-long spray program in compliance with IRM principles.
- Consider the timing of different pest species, their overlapping generations, and the risk of resistance development.
- Avoid repeated applications of the same mode of action across multiple treatment windows if the same insect species pest is present.
- Where two different species appear simultaneously always use the higher recommended rate for the more difficult to control species.

Example on maize pests:
Carefully plan spray programs against different pest targets to avoid repeat applications of the same MoA against consecutive generations (windows) of the same pest.
8. Avoid using insecticides with the same Mode of Action where resistance is known

- Avoid continuous use of the same Mode of Action on a resistant population since it may increase resistance levels.
- Do not use higher than recommended label rates.
- This recommendation is valid for solo and mixture products that contain the ineffective MoA.

Example on Diamondback Moth, *Plutella xylostella*:

Chemical Control of *Plutella xylostella*

- Select insecticides based on known local effectiveness and selectivity.
- Rotate insecticides by mode of action group, using a window approach.
- Use only insecticides registered for diamondback moth control.
- Always follow the directions for use on the label of each product.

<table>
<thead>
<tr>
<th>MoA</th>
<th>Primary Site of Action</th>
<th>Chemical Sub-group or Exemplifying Active</th>
</tr>
</thead>
</table>

1. Acetylcholinesterase inhibitors

- 1A: Carbamates
- 1B: Organophosphates

2. GABA-gated Cl channel antagonists

- 2B: Phenylpyrazoles (Euproles)

3. Sodium channel modulators

- 3A: Pyrethroids, Pyrethrins

4. Nicotinic acetylcholine receptor agonists

- 4A: Neonicotinoids

5. Nicotinic acetylcholine receptor allosteric activators

- Spinosyns

6. Chloride channel activators

- Avorimectins, Milbemycines

11. Microbial disruptors of insect midgut membranes and derived toxins

- *Bacillus thuringiensis* var. *kurstaki*

13. Uncouplers of oxidative phosphorylation via disruption of the proton gradient

- Pyrrolys

15. Inhibitors of chitin biosynthesis, type 0

- Benzoylureas

18. Ecdysone receptor agonists

- Diacyhydrazines

21. Mitochondrial complex I electron transport inhibitors

- 21A: Tolfenpyrad

22. Voltage-dependent Na channel blockers

- 22A: Indoxacarb
- 22B: Molfamizone

28. Ryanodine receptor modulators

- Diamides

UN: Compounds of unknown/uncertain MoA

- Azadirachtin, Pyridyls

Plutella xylostella Resistance Mechanisms

Several biochemical mechanisms are described as conferring resistance to insecticides in *P. xylostella*. Many of these mechanisms listed below act together and can confer resistance factors of 1000-fold or greater.

1. Enhanced metabolic detoxification mechanisms
2. Insensitive acetylcholinesterase
3. Reduced Cry1C binding to target site in midgut membrane and reduced conversion of Cry1C protoxin to toxin
4. Knock-down resistance – mutation(s) in voltage-gated sodium channels providing pyrethroid resistance.
5. Other mechanisms – include modified GABA-gated chloride channels and reduced penetration.

Determine if the target pest is resistant to commonly applied insecticides. Avoid using all products that contain the resistant MoA insecticide on a farm where resistance has been identified.
9. The use of non-specific mode of action products helps to prevent the development of resistance.
Plant protection products such as oils and soaps which have a non-specific Mode of Action are good resistance management tools which should be recommended for use in rotation or combination with insecticides, provided that they similarly control both susceptible and resistant target pest populations.

10. Monitor problematic pest populations in order to detect first shifts in sensitivity.
Baseline sensitivity data for representative field populations of pests should be established by industry experts before the products became widely used. Re-examining the insecticide sensitivity of pest populations at regular intervals can be used to detect changes in susceptibility.
Monitoring methods for many of the major agricultural pests have been established by IRAC and can be found on the IRAC website www.irac-online.org/teams/methods/. Reporting of field failures to IRAC company representatives is also a good way detect early shifts in pest sensitivity.

11. Where local information is known about cross-resistance between different MoA groups.
Although in most situations rotation between different Mode of Action (MoA) insecticides will be useful, there have been some cases of metabolic cross resistance between molecules belonging to different groups. Therefore, it is recommended to consult local experts to find out the known status of resistance in your area. Avoidance of cross-resistance may help to build up a more effective rotation strategy.

12. Never use a product of questionable origin or composition.
Products from unknown or non-approved sources may not have the advertised composition, in which case efficacy may be affected and IRM becomes impossible. Moreover, illegal products may pose risks for users and the environment.

13. Make sure to follow appropriate country label instructions.
On the internet, using search engines, it is possible to locate product labels from most countries where the product is registered. Directions for use, even for the same crop, vary from country to country. Make sure to verify that the label pertains to the country of intended use, so that important instructions such as application rates and methods do not inadvertently contribute to generate or worsen resistance problems.

14. The use of the same insecticide to control different types of insect pests (Lepidoptera, Coleoptera, sucking insects).
These Lepidoptera IRM guidelines also apply to non-Lepidopteran pests unless more specific recommendations are available.
Insecticide Resistance
Management Guidelines for
Lepidopteran Pests

IRAC Lepidoptera Working Group
TEXT VERSION, February 2019

© Copyright 2019 Insecticide Resistance Action Committee (IRAC)
IRAC Lepidoptera Working Group

The guidelines presented here are designed by the Lepidoptera Working Group of the Insecticide Resistance Action Committee (IRAC). Our objective as industry technical experts and IRAC members is to provide a reference document for designing IRM strategies for lepidopteran pests. The information provided is based on published information and to the best knowledge of IRAC International at the time of writing (February 2017).

As pest problems and control practices differ considerably between countries, crops and climatic conditions, these guidelines are meant to be flexible and allow experts to develop, adapt and implement these options to take local conditions into account. However, exceptions will need to be addressed by experts on a case by case basis.

Introduction

Resistance to insecticides is a ‘heritable change in the sensitivity of a pest population’ that is reflected in the repeated failure of a product to achieve the expected level of control when used according to label recommendations for that pest species. The aim of this guideline is to summarize strategies that companies, influencers and growers can use to slow the development of resistance and provide more effective and sustainable pest control.

IRAC Mode of Action Classification

Lepidoptera insects can be controlled by insecticide compounds with different mode of action (MoA). Repeated use of any insecticide can lead to resistance to that specific insecticide. In addition, if insects become resistant because of a change in the binding site of the insecticide, insects will become resistant to all insecticides with the same mode of action.

The IRAC MoA classification is intended to identify insecticides acting at specific target sites where mutations could confer cross-resistance to all compounds acting on the same site. It provides a guide to the selection of insecticides for use in an effective and sustainable insecticide resistance management (IRM) strategy.

A summary list of insecticide MoA and corresponding chemical groups is shown in Appendix 1. More details on insecticide Modes of Action can be found on the IRAC web site irac-online.org and the IRAC MOA App can be downloaded on to your cell phone.

The IRAC Mode of Action group numbers are now included on product labels in many countries. Additionally, statements providing insecticide resistance management guidance are also often given on the labels.

Status of Resistance to Lepidoptera insecticides

There are many published instances of Lepidopteran species where resistance to insecticides has developed and others which have the potential to develop resistance. For the latest information please refer to the IRAC web site irac-online.org.
IRAC IRM Guidelines for Lepidopteran Pests

Guidelines:

1. **IRAC member companies are responsible for including IRM information in product labels.**
 The principle is to provide clear IRM information using language and a format understandable to farmers. Moreover, IRAC member companies recommend stating on product labels the maximum number of applications and the maximum amount of insecticide applied per crop/year. Implementation in countries depends on the local regulatory label guidelines. Examples are provided in Appendix 2 giving options for label text statements and Mode of Action icons.

2. **Always use products at the recommended label rates and spray intervals with the appropriate application equipment.**
 Insecticides used at rates higher or lower than recommended on the label can result in resistance and/or unwanted effects on non-target organisms and the environment. Ensure that all the spray equipment is well maintained and there are no blocked nozzles or filters since this results in incorrect rates. Target the most susceptible insect life stages whenever possible.

3. **Rotation of insecticide Mode of Action groups prevents rapid selection of resistant populations.**
 Farmers can avoid prolonged selection for insecticide resistance by rotating and diversifying the insecticide modes of action used in a crop cycle. The recommended approach is to use products of the same MoA within a discrete period of time commonly called a “window”. A window is defined by the duration of an insect generation or approximately 30 days. The period of residual activity provided by a single or sequence of product applications with the same mode of action should fit within a window.

 a) Avoid exclusive use of any mode of action group insecticides throughout a crop cycle.
 b) Apply insecticides of the same mode of action group within a window to avoid exposure of consecutive insect pest generations to the same mode of action.
 c) Multiple applications (generally less than 3) of the same MoA insecticide are acceptable if they are used to treat a single insect generation or are used within a window. Make sure that the residual activity of the multiple applications fits within the window.
 d) Following a window of any mode of action group, rotate to a window of applications of effective insecticides with a different mode of action.
 e) If insecticides from several mode of action groups are available, then the use of multiple modes of action within a window is recommended provided that different modes of action are used in the following window (see Appendix 3 for an example).
 f) For short cycle crops (<50 days), consider the duration of the crop cycle as a window, so it is recommended to alternate to different modes of action within the next crop cycle.
 g) As a general rule, the total exposure period of all windows with the same MoA applied throughout the crop cycle (from seedling to harvest) should not exceed 50% of the crop cycle. The total number of insecticide applications of the same MoA should not exceed 50% of the total number of insecticide applications targeted against the same pest species.
 h) Avoid rotating products in different sub-groups of the same MoA except if there are no effective alternatives.
 i) Examples of IRM rotation strategies are shown in Appendix 4.
4. Use Integrated Pest management (IPM) practices to protect crops from pest damage and reduce the risk of insecticide resistance.

IPM considers all available techniques to discourage the development of pests, which are economic, safe and environmentally-sound. It does not exclusively rely on insecticides, hence in IPM systems selection pressure by specific modes of action is reduced and the risk of resistance minimized.

IPM strategies consist of basic components:

a) Understand pest threshold levels resulting in economic losses. Observe pest populations in the field to identify species, pest stages, population densities, and presence of natural enemies so rational pest control decisions can be made.

b) Integrate effective control techniques including cultural, chemical, biological and plant biotechnology pest control measures, which minimize effects on non-target organisms:
 - Use resistant or damage tolerant crop varieties.
 - Practice sanitation and removal of infested post-harvest crop residues.
 - Avoid year round cultivation of susceptible crops to limit survival of treated pest populations.
 - Integrate non treated refuge crops into the cropping system (to allow breeding of treated survivors with untreated populations to dilute resistance genes).
 - Deploy mating disruption.

c) Plan the use of selective insecticides to conserve and complement the efficacy of beneficial organisms.

d) Contributions of beneficial organisms to pest control can be significant in many cropping systems and can also play an important role in resistance management. Beneficials can effectively control target pests regardless of insecticide resistance and thus may slow down the resistance selection process. Different application techniques e.g. soil drench or seed treatment can help conserve beneficial organisms since they may escape direct exposure. Choose insecticides that are safe to beneficial insects and time insecticide applications during periods of low beneficial activity or during their protected life stages when direct contact with the insecticide is limited.

5. Consider the systemic properties of some soil and seed-applied products.

The systemic properties of some active ingredients allow these products to be applied either directly to the soil, as a seed treatment or as foliar spray. Systemic activity may extend the residual efficacy and the length of the MoA spray window and needs to be considered when planning a program to minimize resistance development. Generally, it is recommended to use an effective foliar product with a different mode of action after either a seed treatment or a soil root uptake application.
IRAC has issued advice about the use of insecticide mixtures. For guidance refer to the IRAC-mixture-statement and IRAC leaflet-on-use-of-mixtures. As with applying single active ingredient products, insecticide mixture products should be used with careful consideration of the characteristics of the individual active substances, use pattern and pest complex targeted. In most cases, the primary objective for the use of an insecticide mixture (tank-mix or pre-formulated mixture) is not resistance management, but a broader spectrum or improved pest management.

7. The use of insecticides of the same Mode of Action against different pests in the same crop.
Multiple uses of different insecticides against more than one pest species in the same crop are feasible, but should be considered within the framework of insecticide resistance management programs and developed at local level, taking into account changes in pest populations, overlapping of different species, the relative importance and the risk of resistance development. Good resistance management practices such as avoiding repeated applications of the same mode of action across multiple treatment windows due to application against multiple pest species are key to successful IRM implementation. Where two species appear simultaneously always use the higher recommended rate for the more difficult to control species.

8. Avoid use insecticides from the same Mode of Action where resistance is known.
Continuous use of the same Mode of Action on a resistant population may escalate resistance levels and should be avoided, particularly if the product is used at higher than recommended rates. This recommendation is valid for solo and mixture products that contain the ineffective MoA.

9. The use of non-specific mode of action products helps to prevent the development of resistance.
Plant protection products such as oils and soaps which have a non-specific Mode of Action are good resistance management tools which should be recommended for use in rotation or combination with insecticides, provided that they similarly control both susceptible and resistant target pest populations.

10. Monitor problematic pest populations in order to detect first shifts in sensitivity.
Baseline sensitivity data for representative field populations of pests should be established by industry experts before the products became widely used. Re-examining the insecticide sensitivity of pest populations at regular intervals can be used to detect changes in susceptibility. Monitoring methods for many of the major agricultural pests have been established by IRAC and can be found on the IRAC website www.irac-online.org/teams/methods/. Reporting of field failures to IRAC company representatives is also a good way detect early shifts in pest sensitivity.
11. Where local information is known about cross-resistance between different MoA groups.
Although in most situations rotation between different Mode of Action (MoA) insecticides will be useful, there have been some cases of metabolic cross resistance between molecules belonging to different groups. Therefore, it is recommended to consult local experts to find out the known status of resistance in your area. Avoidance of cross-resistance may help to build up a more effective rotation strategy.

12. Never use a product of questionable origin or composition.
Products from unknown or non-approved sources may not have the advertised composition, in which case efficacy may be affected and IRM becomes impossible. Moreover, illegal products may pose risks for users and the environment.

13. Make sure to follow appropriate country label instructions.
On the internet, using search engines, it is possible to locate product labels from most countries where the product is registered. Directions for use, even for the same crop, vary from country to country. Make sure to verify that the label pertains to the country of intended use, so that important instructions such as application rates and methods do not inadvertently contribute to generate or worsen resistance problems.

14. The use of the same insecticide to control different types of insect pests (Lepidoptera, Coleoptera, sucking insects).
These Lepidoptera IRM guidelines also apply to non-Lepidopteran pests unless more specific recommendations are available.