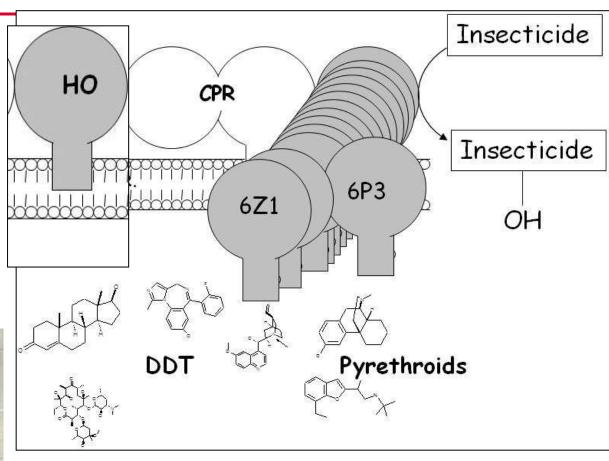


Metabolic Resistance Mechanisms: of man and mosquitoes Mark Paine - IRAC 19th March 2013 14.30 - 15.00

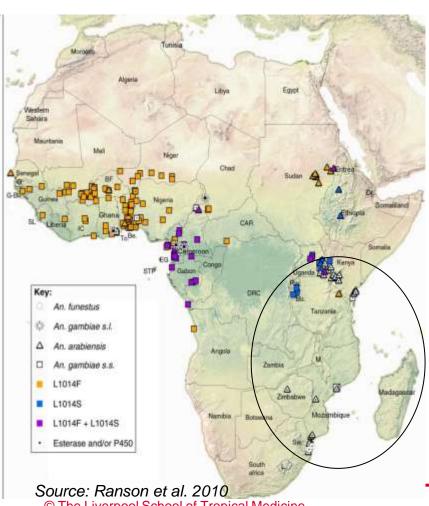
Drug Discovery: The first CommandmentThou shalt determine if your drug is a P450 ligand


Insecticide Resistance: Mechanisms, Monitoring, New Tools

Enzyme Characterisation Group

- Resistance
 - Validation
 - Mechanism
 - Translation
 - P450
 - Heme oxygenase
 - Diagnostic kits

Mosquitoes, Sand flies, Bees, Spidermites, Whitefly, Diamondback moth



How metabolic resistance mechanisms vary amongst mosquitoes (Anophelines)

Pyrethroid Resistance mechanisms

Pipeline for identification of resistance candidates

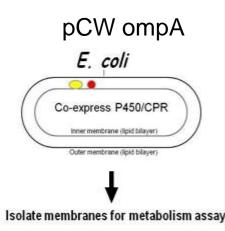
Phenotype

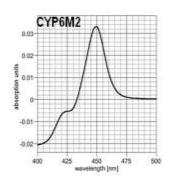
Candidate

Validate

Technology

Field test


Pyrethroid characterisation pipeline 2006 - 2008

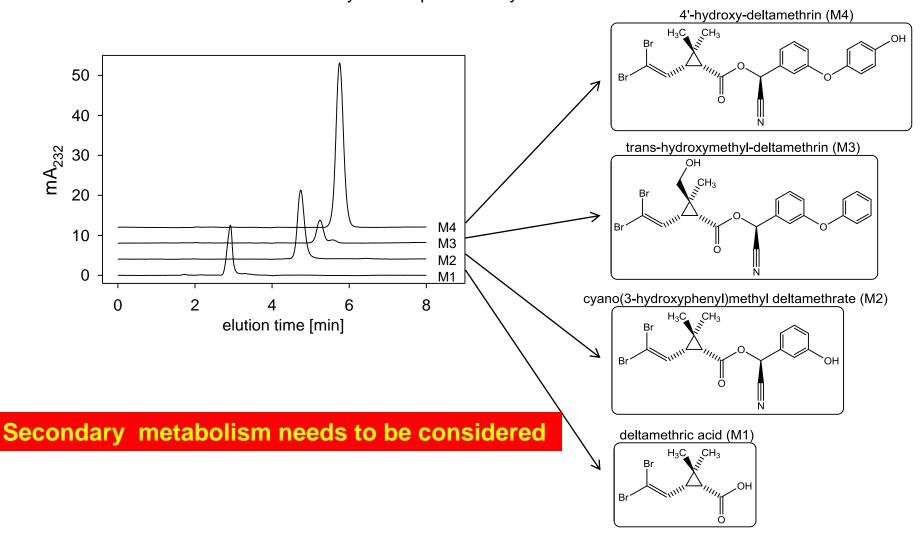


Candidates

Cloning Expression Metabolism

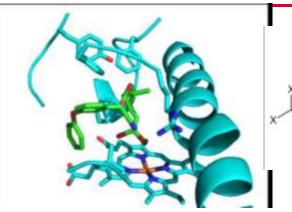
Organism	Gene
A. gambiae	cyp325a3
	cyp4g16
	cyp4h19
	cyp4h24
	cyp6m2
	cyp6p3
	cyp6z1
	cyp6z2
	gsts1-1
	gsts1-2
A. funestus	cyp6p4
	cyp6p9
A. aegypti	cyp6cb1
	cyp9j10
	cyp9j19
	cyp9j24
	cyp9j26
	cyp9j28
	cyp9j32
	cyp9j9
	gste4

CYP6Z2, CYP6M2 and CYP6P	3
300 - 400 assays/litre culture	9


•		
P450	Permeth (min ⁻¹)	Deltameth (min ⁻¹)
CYP6P3	3.1	2.6
CYP6M2	6.0	1.2
CYP6Z2	0	1
CYP6P9a	Yes	Yes
CYP9J32	0.8	3.0
<u> </u>		

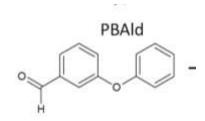
Muller et al, 2008 PLoS Gen Stevenson et al 2011, IBMB Stevenson et al 2012, PLoS NTD McLaughlin et al, 2006, IMB Riveron et al, 2013, PNAS

CYP6M2: How is deltamethrin metabolised?



Reaction volumes and times were increased and metabolites were isolated by HPLC with fraction collection. These were then studied by mass spectrometry and NMR.

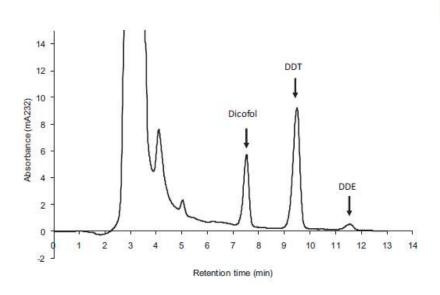
Why is CYP6Z2 overexpressed?



Clashes prevent metabolism of pyrethroids

PBAIC

But not metabolic products

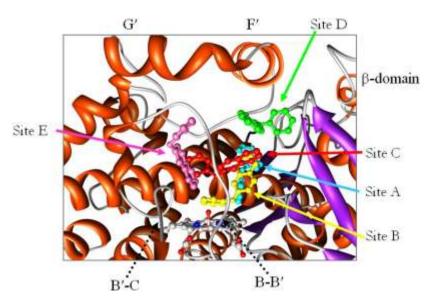


Does secondary metabolism contribute to resistance?

J-P David et al submitted

Evidence that cooperativity may be important

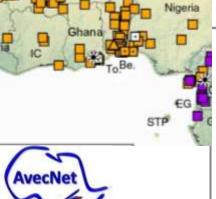
CYP6M2 metabolises DDT to dicofol and DDE in the presence of sodium cholate


Mitchell et al 2012 PNAS

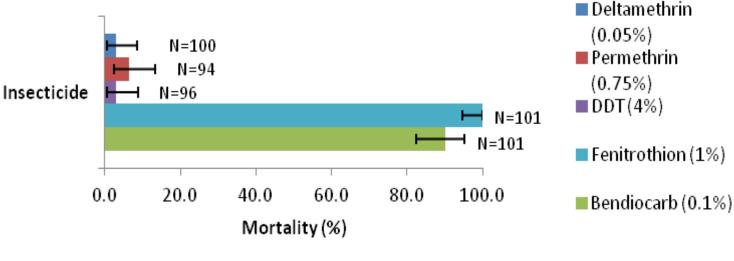
0090-9556/08/3610-2136-2144\$20.00
DRICK MITTAGURM AND DISTORTION
Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics
DMD 36:2136-2144, 2008

Vol. 36, No. 10 21733/3388107 Printed in U.S.A.

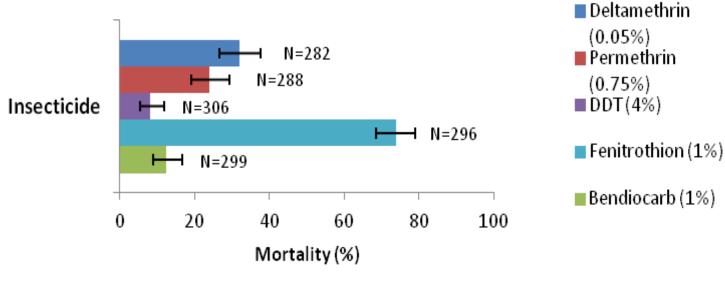
Multiple Substrate Binding by Cytochrome P450 3A4: Estimation of the Number of Bound Substrate Molecules


Yury Kapelyukh, Mark J. I. Paine, Jean-Didier Maréchal, Michael J. Sutcliffe, C. Roland Wolf, and Gordon C. K. Roberts

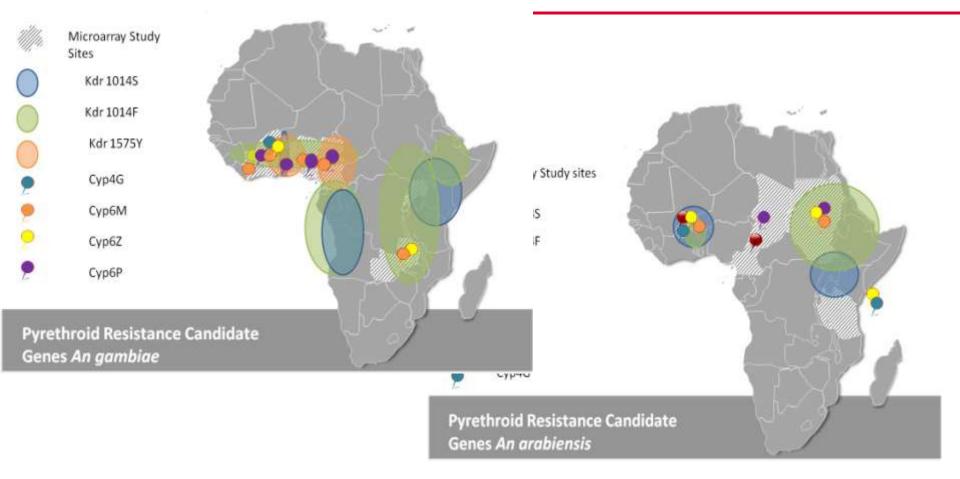
CYP3A4 binds at least 4 7BQ's


2012-13

WHO insecticide resistance bioassays from Burkino Fas and Ivory Coast

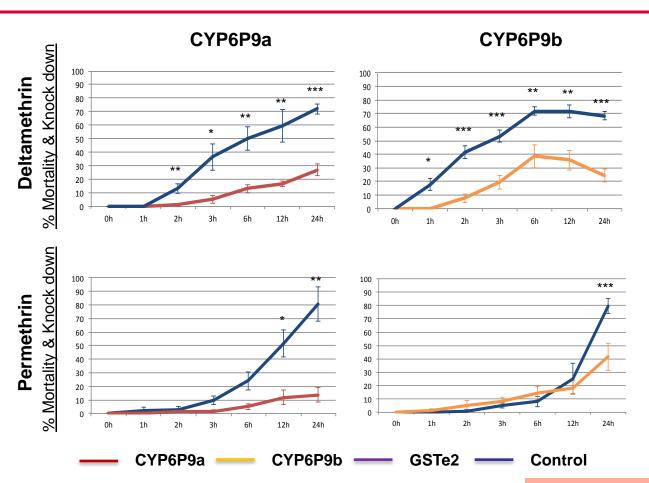


Chris Jones, Hilary Ranson Edi Constant Toe Hyacinthe Dave Weetman

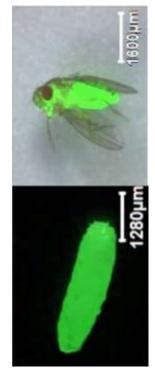


An. gambiae Tiassalé, Cote d'Ivoire

Current status - distribution of Pyrethroid Resistance Genes in *An gambiae* and *arabiens*is

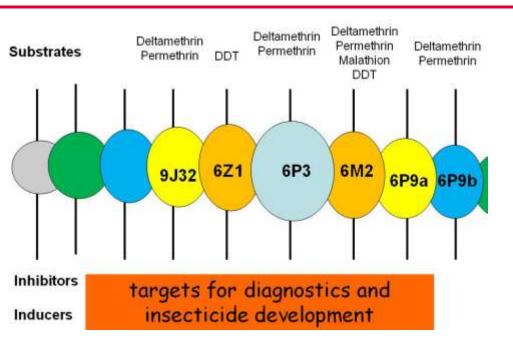


Kdr and metabolic resistance, mostly overlapping Caution – limited set of data


Contributed by Chris Jones

Validation of *An funestus* resistance genes using transgenic *Drosophila melanogaster*

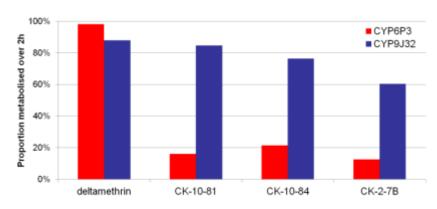
GAL4-Actin 5C broad tissue expression


Shen et al; 2009

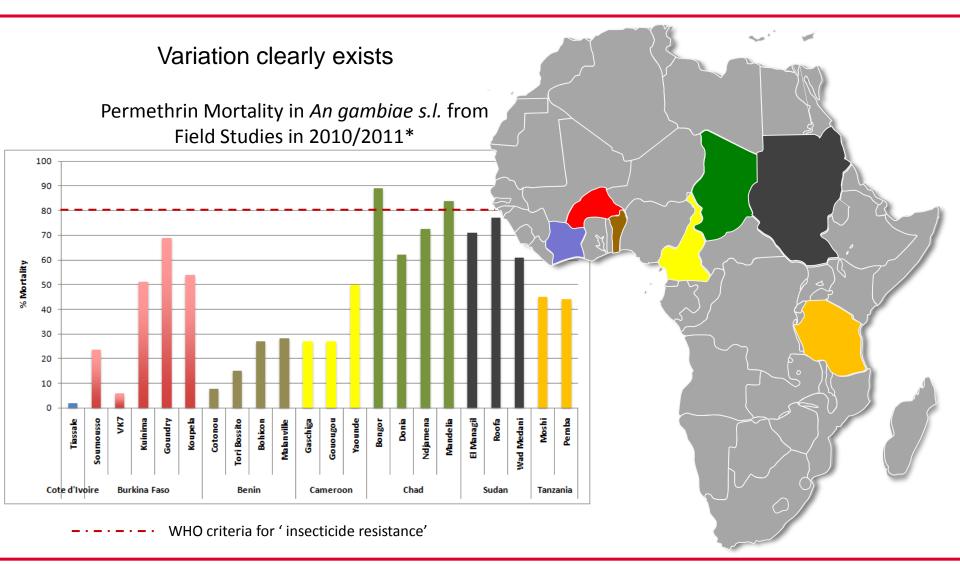
Riveron et al, 2013 PNAS.

In progress: CYP6M4 and 7 CYP9J11

√Core metabolic resistance genes for pyrethroids have been identified



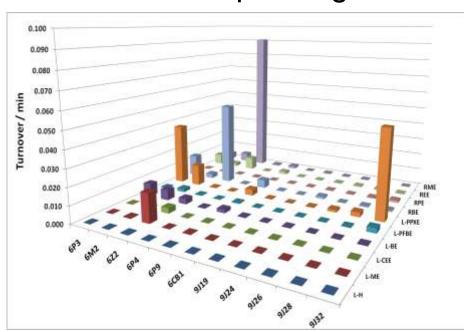
Commercially Available


Mosquito CYP6P3, 6P9a, 9J32 from LSTM/LITE Mammalian from Cypex Ltd, Dundee

using CYPs to validate pyrethroid SAR (Ward, O'Neill, Hong)

Variation in pyrethroid resistance across Africa

How does variation in metabolic resistance mechanisms lead to variations in resistance levels amongst insecticides from the same and different chemistries ?????


Work in progress

Bioassays

Strain	Insecticide	LD50	RR
Ngousso	Permethrin		
(An. gambiae)	Bifenthrin	0.04	
	Deltamethrin Lambda-	0.0196	
	cyhalothrin	0.017	
VK7	Permethrin	6.3246	
(An. gambiae)	Bifenthrin		
	Deltamethrin Lambda- cyhalothrin	0.2601	13.266

Determine relative resistance levels

P450 profiling

Identification of diagnostic probes

Poupardin unpublished

Stevenson et al 2012 PlosNTD

Profile of CYP6M2 interactions with WHO insecticides

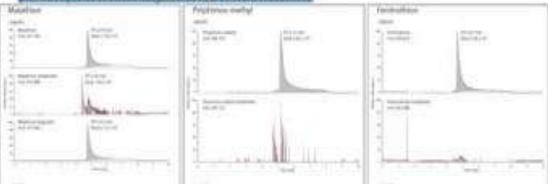


Table 2. IC50 for CYP6M2 inhibition by 15 insecticides.

Compound	IC ₅₀ (µM)	Class
DDT	2.31 ± 0.56	OC
Chlorpyriphos	0.94 ± 0.19	OP
Diclorvos	> 10	OP
Fenitrothion	2.30 ± 0.72	OP
Malathion	0.14 ± 0.05	OP
Piriphimos methyl	1.22 ± 0.48	OP
Bendiocarb	> 100	C
Propoxur	> 100	C
Alpha-cypermethrin	0.32 ± 0.12	P
Brienthrin	1.98 ± 0.37	P
Cyfluthrin	0.31 ± 0.08	P
Deltamethrin	0.51 ± 0.03	P
Etofenprox	1.84 ± 0.67	P
Lambda-cyhalothrin	1.04 ± 0.26	P.
Permethrin	1.19 ± 0.25	P

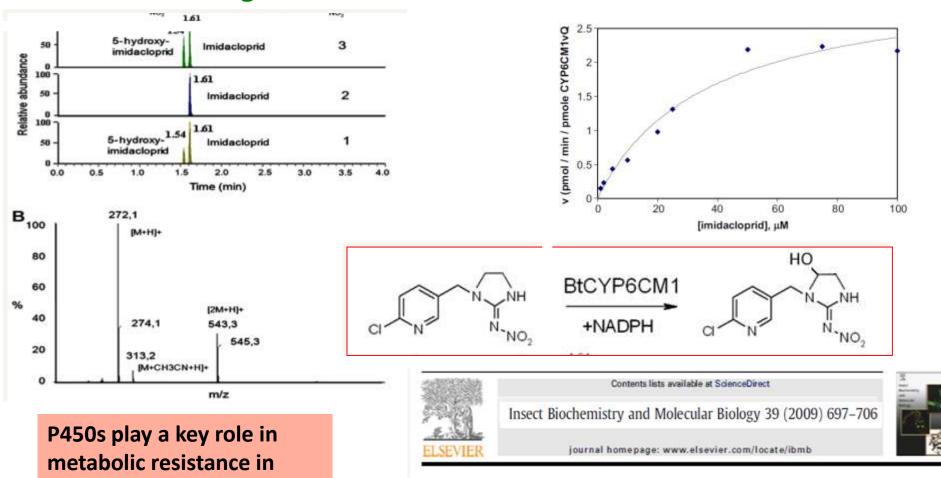
n = 3 different CYP6M2 preps: OC Organochlorine, OP, organophosphate, C, carbamate, P, pyrethroid

Fig 2. LC-MS analysis of CYP6M2 metabolism of malathion, pirimiphos methyl and fenitrothion.

Rapid inhibition screens provide an indication of susceptibility to metabolism

Voice et al Poster ISSX USA 2012

Cypex Ltd Dundee


Core P450s: metabolism profile against WHO insecticides

% Turnover

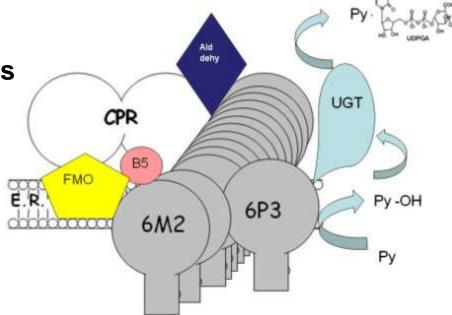
	An. gambiae		An. funestus		Ae. aegypti		
Insecticide	СҮР6М2	CYP6P3	CYP6Z2	CYP6P9a	CYP6P9b	CYP9J3 2	CYP9J24
Deltamethrin	60	92	15	74		90	30
Permethrin	49	98	20	85		61	76
Lambda- cyhalothrin				94			
Bifenthrin		98	0	78		25	0
Alpha- cypermethrin	88	99	0	74			3
Etofenprox		98	13	90			22
DDT			0	0			
Malathion							
Bendiocarb							
Propoxur							

Identification of metabolite: the CYP6CM1vQ enzyme catalyses the hydroxylation of imidacloprid to its 5-hydroxy form with a high conversion rate

agricultural pests

Structural model and functional characterization of the *Bemisia tabaci* CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance

Iris Karunker^{a,1}, Evangelia Morou^{b,c,1}, Dimitra Nikou^{b,c}, Ralf Nauen^d, Rotem Sertchook^e, Bradley J. Stevenson^c, Mark J.I. Paine^c, Shai Morin^{a,*}, John Vontas^{b,f,**}



Conclusions

- Metabolic resistance clearly important factor in insecticide resistance
- As yet no easy diagnostic to determine its impact reliance on microarrays

However, starting to understand the core P450s involved in resistance

Leading to new tools and Paradigms

