

IRAC SPWG Spring Meeting

Session 4b Thursday 21st March

Chairman, Stephen Skillman

Agenda

9.30 - 10.30

Review of SPWG achievements in 2012

Emerging sucking pest resistance problems, reports, publications

10.30-10.45 Coffee break

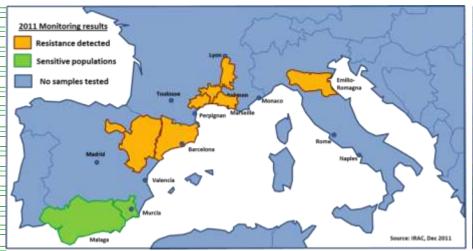
10.45-12.30

Objectives 2013 and accents for IRM in 2014

IRAC website documentation and updating

SPWG Team membership 2012

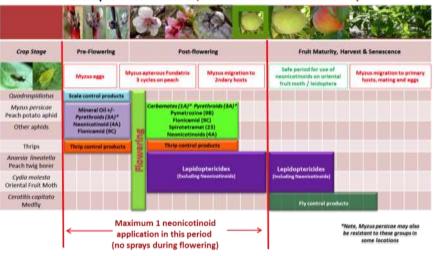
Current SPWG team	Company		Departing members	Company
Alan Porter	IRAC			
Alejandro Arevalo	BASF			
Dan Vincent	DuPont			
Eric Andersen	Cheminova			
James Thomas	Dow			
Jean-Paul Genay	Nufarm			
Luis Gomez	Dow			
Michael Klueken	Bayer CS	replacing	Matthias Haas	Bayer CS
Ralf Nauen	Bayer CS			
Russell Slater	Syngenta			
Steve Skillman	Syngenta			
Tamar Danon	MAI	replacing	Jonathan Henen	MAI
Tatjana Sikuljak	BASF			
			Shuvash Bhattarai	Chemtura


- Welcome to Alejandro, Michael and Tamar!
- Thanks to Jonathan, Matthias and Shuvash
- Team questions/discussion:
 - MOA coverage for sucking pests?
 - Groups 7C, 9C, 21: ISK/FMC/BELCHIM/NIHON NOHAYAKU/SUMITOMO?
 - Independent advisor/observer on team?
 - Vice chairman?

Objectives and achievements 2012

= =	Goals	Obje	ctives	Timeline	Status March 2013
=	Short term actions to	•	Focus on Neonicotinoid resistance management in <i>Myzus persicae</i> in peaches in Southern Europe	2012	Done
	minimise spread of	•	Develop and agree 2012 recommendations for Myzus IRM in Europe at Jan. Barcelona meeting	Q1 2012	Done
=	resistant pests	•	Distribute E-Newsletter with Myzus IRM recommendations in English	Q1 2012	Done
_	resistant pests	•	Translate E-Newsletter with Myzus IRM recomendations into French, Italian and Spanish with help		
			from local IRAC representatives and distribute to IRAC member organisations & authorities	Q2 2012	Done
		•	Publish 2011 monitoring results – (Rothamsted Research, Ian Denholm)	Q3 2012	Pending
=		•	Check new areas in peaches for <i>Myzus</i> resistance – eg Greece, Valencia (Bayer, others)	Q3 2012	Done, except Greece
		•	To study the spread of resistant Myzus from peaches to neighbouring crops		
=			 Collect Myzus from crops other than peaches in summer 2012, Fr, It, Es (all members) 	Q3 2012	Partially done Italy
			 Screen for NNI target site resistance in Myzus (Bayer, Syngenta) 	Q3 2012	Ongoing
		•	Based upon the above findings compile Myzus recommendations for the 2013 season in		
_			collaboration with IRAC Spain and other National WGs. (SPWG meeting in S. Europe)	Q4 2012	Done
_	Prepare IRM guidelines	•	Myzus persicae (update poster) to reflect new NNI findings (Ralf Nauen)	Q3 2012	Pending
	for pests with, or at risk	•	Mites (new poster) (Fergus Early (MOA team) with & Ralf Nauen/Michael Klueken)	Q3 2012	Done
	of developing resistance	•	Nilapavarta lugens, Brown Plant Hopper (new poster) (Russell Slater + IRAC SE ASIA)	Q3 2012	Done
_	in the mid term	•	Diaphorina citri, Asian Citrus Psyllid (new poster) (Alejandro Arevalo + IRAC Brazil)	Q3 2012	Done
_	in the mid term	•	Euschistus heros, Brown Stink Bug (new poster) (Russell Slater)	Q4 2012	Pending
	Prepare for future	•	Action plans for specific key pests/chemistries that may be developing resistance.		
	Sucking Pest problems		 Sitobium avenae (pyrethroid target site resistance, UK) 		
=	long term		 Obtain monitoring results from UK (Dewar) and Germany (JKI-Heimbach) 	Q4 2012	Done
			 Collaborate with IRAG (UK-20.11.2012) and JKI (DE) to establish IRM guidelines 	Q4 2012	(Done by IRAG)
			 Diaphorina citri (neonicotinoids, pyrethroids, Florida, USA, Brazil) 		
=			 Elaborate specific methodology for Diaphorina (Tatjana Sikuljak – MOA group) 	Q3 2012	Pending
			 Obtain results of monitoring in Florida (Lucas Stallinski Univ Florida) 	Q4 2012	Pending
			 Establish baselines for Als using agreed method (IRAC members responsibility) 	Ongoing	Pending
=			 Aphis gossypii (neonicotinoid target site resistance, Korea) 		
			 Publication expected in Korean Congress of Entomology (Russell Slater) 	Q3 2012	Pending
=			 Vigilance for field complaints (all members) 	Ongoing	Ongoing

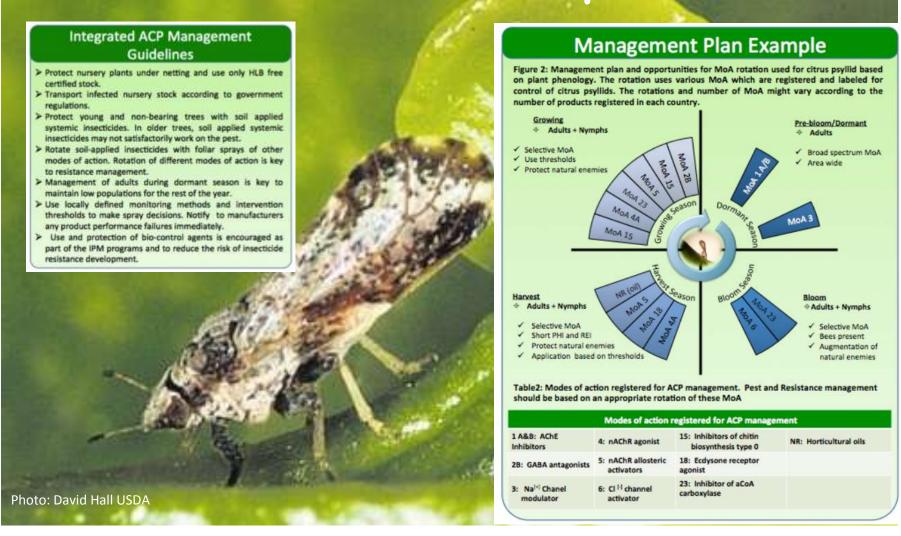
Review 2012: Myzus resistance alert 2012 & 2013



- Detections further south in Spain and Italy
- Gaps filled in France, vegetable population in Italy
- IRAC EU guideline adapted to proposals of IRAC Spain
- IRAC SPWG guideline issued eConnection 31 Jan 2013. Main recommendation for peaches:
 - Avoid NNI use if decline in activity noticed
 - If still working, only 1 NNI application, any timing but not during flowering
 - Rotate with other MOAs
- Earlier timing of announcements and WOW improvements (involvement of IRAC Spain)

Special credits and thanks -IRAC Spain, Josep Isquierda, Italy Univ Piacenza Dr. E. Mazzoni

IRAC management recommendations for Neonicotinoid-resistant Myzus persicae: **Example 2013: Peaches, Nectarines in Southern Europe**



Review 2012: *Myzus persicae* other publications

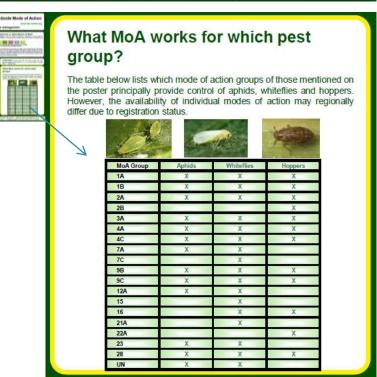
- Sustaining the effectiveness of new insecticides against aphid pests in the UK (August 2012)
 - Dr Steve Foster, Prof Rod Blackshaw. Three year Project 2009-2012
 - Joint funded AHDB, (HDC, HGCAPotato Ocuncil), DEFRA, BBRO, Bayer, Belchim, Certis, Syngenta
 - No NNI target site resistance in UK populations of Myzus persicae
 - There is no association between resistance to neonicotinoids and other resistance mechanisms: MACE (pirimicarb), kdr and super-kdr (pyrethroids) in *M. persicae*.
 - MACE resistance (to pirimicarb) continues to be common and widespread in *M. persicae* in the
 UK and in many mainland European countries.
 - Since 2003, continued decline in frequency of M. persicae carrying kdr resistance to
 pyrethroids even though pyrethroid usage has not fallen. However, this species carries a new
 super kdr resistance mechanism which may be present in the majority of M. persicae in the UK.
- Dispersal behaviour of susceptible vs neonicotinoid-resistant *Myzus persicae* clones (April/August 2012)
 - Lucy Fray, Syngenta AG, SIG Aphid interests group April 2012, Int Congr. Ent. Aug 2012
 - Suggestions that NNI-target site resistant aphids may avoid treated surfaces, improving their survival chances

Review 2012: ACP poster

- Asian Citrus Psyllid still susceptible to NNI's, but under intensive selection pressure
- Strong adherence to IRM programs is KEY to fight the pest and Greening disease
- Acknowledgments to Alejandro Arevalo for designing this poster

Review 2012: Rice Hopper poster

Table 1: Insecticide modes of action to which field collected rice hoppers have been reported in literature as being (1960-2010).


Insecticide Chemistry	Mode of Action	Nilaparvata lugens	Laodelphax striatellus	Sogatella furcifera	Nephotettix virescens	Nephotettix cincticeps
Carbamates	1A	X	X	X	Х	Х
Organophosphates	1B	Х	X	Х	x	х
Cyclodiene organochlorines	2A	х	Х			
Phenylpyrazoles (Fiproles)	2B	х	Х	Х		
Pyrethroids	3A	Х	Х	Х		
Neonicotinoids	4A	Х	Х	Х		
Selective Feeding Blockers	9B & 9C					
Chitin Biosynthesis Inhibitor	16	Х	Х	Х		


Review 2012: MOA posters

- Sucking Pests MOA Jan 2012 general guidelines for sucking pest MOAs
- Mites MOA March 2012 highlights site of action of different acaricides
 - Thanks to MOA Team for updating posters

Review 2012: Cereal, UK, *Sitobium avenae* pyrethroid resistance monitoring

		· ·	al Field population	Surviving insects sent for further testing		Survivors from discriminating dose assay	
		Discriminating Dose assay % Mortality		sects sent testing		% kdr heterozygotes (genotypic characterisation)	
		3ng/cm2	0.3ng/cm2	Surviving in	LC50 (ppm)	Syngenta	Rothamsted
Luton	Bedfordshire	95	40	\rightarrow			
Prickwillow	Cambridgeshire	95	85	\rightarrow			75%
Whittlesea	Cambridgeshire	100	100				0%
Takeley	Essex	100	95	\rightarrow			100%
Sutton Scotney	Hampshire	100	93				0%
Baldock	Hertforshire	100	88				
Newton on Trent	Lincolshire	90	35	\rightarrow	12.1	100%	100%
Elveden	Norfolk	95	75	\rightarrow	11.9	100%	100%
Fair Green	Norfolk	90	65	\rightarrow	8.6	100%	100%
Feltwell	Norfolk	95	90	\rightarrow			
Morley	Norfolk	100	80	\rightarrow			100%
Narborough	Norfolk	95	80	\rightarrow			100%
Oxborough	Norfolk	80	35	\rightarrow			100%
Collingham	Nottinghamshire	90	70	\rightarrow			100%
Chedburgh	Suffolk	100	35	\rightarrow		100%	100%
Welnetham	Suffolk	100	95				
Wickhambrook	Suffolk	80	55	\rightarrow		100%	100%
Susceptil	ole lab strain	100	100		0.4	0%	

- Monitoring shows individual resistant aphids are widespread in UK cereals.
- Impact of resistance variable depending on frequency of resistant individuals.
- High impact after selection with multiple pyrethroid sprays. Heterozygotes only
- No evidence of resistance in German populations tested (limited number)
- IRM implementation needed to stop spread, but few alternatives registered.
 - Acknowledgements to Alan Dewar, DCP UK and M. Andrews, J. Elias , M. Tait Syngenta CP for support and funding

Review 2012: Cereal, UK, *Sitobium avenae* IRM recommendations by IRAG UK

Integrated management of BYDV

- Seed treatments with neonicotinoids
- Grass weed and cereal volunteer control
- Avoid early sowing in September
- Monitor aphids flying into cereal crops in Autumn
- Effective timing of foliar insecticide applications
- Use full rates of insecticides
- Control failures: send aphid samples to Rothamsted/Dewar CP
- If pyrethroid control was poor, then switch to other mode of action
- Alternatives registered in Autumn include pirimicarb (1A) and chlorpyrifos (1B)

Sitobion avenae (grain aphid) Key pest in both summer and autumn when virus transmission is significant

Dogument

Review 2012: Bemisia tabaci | Brazil

ANEXO - QUADRO 1

Grupo Químico ou Ingrediente Ativo	Ingrediente Ativo
Neonicotinóide (4A)	Acetamiprido
	Clotianidina
	Imidacloprido
	Tiametoxam
	Tiacloprido
ase Organofosforado (1B)	Acefato
	Clorpirifós
	Dimetoato
	Malationa
	Metamidofós
	Piridafentiona
	Profenofós
	Terbufós
Carbamato (1A)	Carbofurano
	Carbosulfano
dio Piretróides (3A)	Bifentrina
	Beta-ciflutrina
	Beta-cipermetrina
	Deltametrina
	Esfenvalerato
	Fenpropatrina
	Lambdacialotrina
Éter difenîlico	Etofenproxi
itina Buprofezina (16)	Buprofezina
Piriproxifen (7C)	Piriproxifem
s Cetoenol (23)	Spiromesifeno
Diafentiuron (12A)	Diafentiurom
äo Clorpenapir (13)	Clorfenapir
Piridina azometina	Pimetrozina
o Tetranortriterpenóide	Azadiractina
	Ingrediente Ativo Neonicotinóide (4A) Neonicotinóide (4A) ase Organofosforado (1B) Carbamato (1A) dio Piretróides (3A) Éter difenílico itina Buprofezina (16) Piriproxifen (7C) S Cetoenol (23) Diafentiuron (12A) äo Clorpenapir (13)

New Leaflet from IRAC
 / BR issued in May
 2011 – could whiteflies
 reach epidemic status
 in Brazil?

 Special thanks to IRAC Brazil and Consultants: Prof. Dr. Celso Omoto – ESALQ/USP, Prof. Dr. Raul Narciso C. Guedes – UFV

Arising sucking pest resistance problems: *Aphis gossypii*

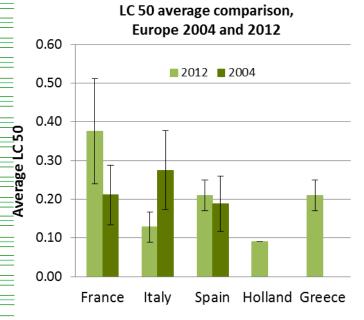
Journal of Food, Agriculture & Environment Vol.10 (2): 1227-1230. 2012

www.world-food.net

The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover)

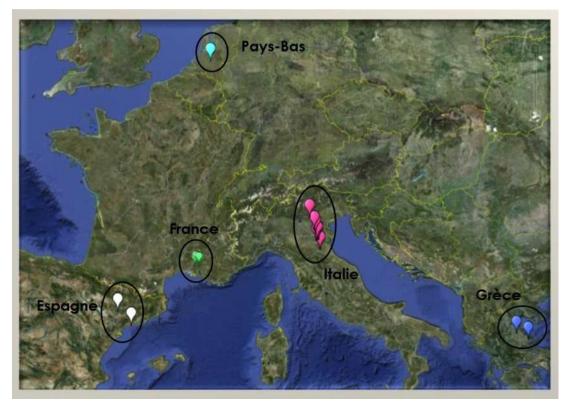
Xu-Gen Shi ¹, Yu-Kun Zhu ¹, Xiao-Ming Xia ¹, Kang Qiao ¹, Hong-Yan Wang ² and Kai-Yun Wang ^{1*}
¹ Department of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, P.R. China. ² Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China. *e-mail:wky@sdau.edu.cn

Received 18 February 2012, accepted 30 April 2012.


Abstract

Neonicotinoid insecticides, such as imidacloprid, are selective agonists on the insect nicotinic acetylcholine receptors - their molecular target site, which are used extensively to control a variety of different pest species. Just like other classes of insecticides, resistance to neonicotinoids is a significant threat, which has been identified in several pest species, including the cotton aphid, *Aphis gossypii* (Glover), a major cotton pest in many parts of Asia. A 66.49-fold imidacloprid-resistant *Aphis gossypii* strain was established in our work after selection for 60 generations. Analysis of the cDNA sequence of the nicotinic acetylcholine receptor (nAChR) nAChR) and nAChR and nAChR and the functional extracellular region (ranging from loop A to the 1" transmembrane domain) of the nicotinic acetylcholine receptor nAChR built causing an arginine to threonine substitution (R81T). This mutation has been identified to be a key determinant of neonicotinoid binding to nAChRs and this amino acid change results in reduced sensitivity to neonicotinoids, which confers a vertebrate-like character to the insect nAChRs. This result indicated that in cotton aphids the single mutation (R81T) might confer imidacloprid resistance.

- **China** R81T subsititution (like in Myzus) **produced in the lab** after 60 generations exposure to IMIDACLOPRID in *Aphis gossypii*
- **Japan** Miazaki, Southern Kyushu, 3 *Aphis gossypii* populations from Cucumber and Pepper with signifcant **loss of control** to 5 neonicotinoids but less to ACETAMIPRID and THIACLOPRID Dr Matsuura, July 2012. Mechanism of resistance not yet defined.
- Korea NNI failure reports from Syngenta internal trials on Peppers, Cucumbers
- Australia Grant Heron Aphis gossypii resistance to NNIs has not increased in 2011/2012 season
 - Action for 2013 Monitor NNI performance in all countries, new Guidelines in December



Special report: Pear Psylla sensitivity to Group 6 (abamectin) in Europe, 2012

- 19 populations from 5 countries
- Leaf dip tests with L1-L3 stages
- Mortality at 24h
- Results showed no significant shift in sensitivity of *Cacopsylla* pyri to Group 6 insecticide (abamectin) since 2004

Special thanks to Celine Hirn, Syngenta Cp AG, Stein, Switzerland

Further events in 2012

- New in 2012: Group 4 sub classes. New clauses for IRM on MOA poster:
 - Successive generations of a pest should not be treated with compounds from the same MoA Group.
 - In the absence of other alternatives it may be possible to rotate compounds between subgroups if it is clear that cross-resistance mechanisms do not exist in the target populations.
 - Neonicotinoids: 4A, 4B & 4C Although these compounds are believed to have the same target site, they have been sub-grouped because they are chemically distinct, and current evidence indicates that the risk of metabolic cross-resistance is low. If there are no other alternatives, compounds from groups 4A & 4C may be rotated in situations where cross-resistance mechanisms are known to be absent in the insect population to be treated.
- IRM and mixture products
 - Insecticide mixtures are primarily for improving pest control and not managing resistance
 - Single AI rotation is best, but mixtures may be rotated with single Ais as well in a program
 - Both Als should be full dose and have similar residual effects

Adobe Acrobat Document

- Resistance Statements for EU Re-registration.
 - Is there an opportunity for collaboration via IRAC to harmonise recommendations?
 - Can monitoring or baselines be run in collaboration?

SPWG Team membership 2013

One of ODWO to and	0
Current SPWG team	Company
Alan Porter	IRAC
Alejandro Arevalo	BASF
Dan Vincent	DuPont
Eric Andersen	Cheminova
James Thomas	Dow
Jean-Paul Genay	Nufarm
Luis Gomez	Dow
Michael Klueken (VC)	Bayer CS
Ralf Nauen	Bayer CS
Russell Slater	Syngenta
Steve Skillman (CH)	Syngenta
Tamar Danon	MAI
Tatjana Sikuljak	BASF

Companies not represented	MODE of ACTION
ISK/FMC/Belchim	9C
Sumitomo	7C
Meiji /Nihon Nohayaku	UN/Flometoquin
Nissan	UN/bifenazate

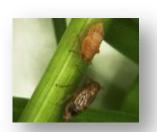
Team questions/discussion:

- Does team represent all key MOAs for sucking pests?
- Should we invite an independent advisor/observer on team?
- Proposals, suggestions

Objectives 2013: Draft proposal 21st March

Goals	Objectives	Timeline	Comments
Short term actions to	• Myzus persicae NNI resistance in Europe – follow regulatory events and new		
minimise spread of	monitoring results and adapt NNI IRM recommendations according to future		
resistant pests	legislation. Reissue new guidelines in Dec 2013	Dec 2013	
- -	• Sitobium avenae PYR target site resistance in UK – Communicate guidelines		
	of IRAG to member companies	Q1 2013	
Prepare IRM	Myzus persicae update poster to reflect new situation in 2013	Q4 2013	
guidelines for pests	Diaphorina citri, Asian Citrus Psyllid – Brazil specific poster IRAC Brazil	Q2 2013	
with, or at risk of	Sitobium avenae support IRAG UK as necessary	Q3 2013	
developing resistance			
in the mid term			
Prepare for future	Action plans for pests that are at risk of developing resistance.		
Sucking Pest problems	o <i>Diaphorina citri</i> (ACP) (neonicotinoids, pyrethroids, Florida, USA, Brazil)		
long term (avoiding	 Elaborate methodology for ACP (Tatjana Sikuljak – MOA group) 	2013	
resistance	 Obtain results of monitoring in Florida (Lucas Stallinski Univ Florida) 	Q1 2013	
development)	 Establish baselines using agreed method (IRAC members responsibility) 	Q4 2013	
≣	o Euschistus heros, Brown Stink Bug: (neonicotinoids, pyrethroids, Florida,		
=	USA, Brazil) poster and guidance on baselines and monitoring methods	Q2 2013	
	 Aphis gossypii (neonicotinoid target site resistance) 		
=	 Monitor complaints globally and report liaise with researchers 	Q3 2013	
= -	o Bactericera cokerelli Potato Zebrachip Psyllid?	Q4 2013	
=	Other pests?		

- Additional proposals? Project? Funding?
- Teleconferences 2013
 - April: Finalise objectives, June: Posters, September: Posters, December: Myzus update


Website document status 5.3.2013

Thanks to the IRAC SPWG team members and external consultants for their support to manage global Sucking Pest Resistance!

